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SIMPLE PERFECT SQUARED SQUARES 
AND 2 x 1 SQUARED RECTANGLES OF ORDER 25 

A. J. W. DUIJVESTIJN 

ABSTRACT. In this note tables of all simple perfect squared squares and simple 
2 x 1 perfect squared rectangles of order 25 are presented. 

1. INTRODUCTION 

For describing the problem of the dissection of squares and rectangles into 
unequal squares in a nontrivial way we use the terminology of Brooks, Smith, 
Stone and Tutte [6] and Bouwkamp [1, 3, 4, 2]. 

A dissection of a rectangle into a finite number N > 1 of nonoverlapping 
squares is called a squared rectangle or a squaring of order N. The N squares 
are called the elements of the dissection. The term "elements" is also used for 
the (length of the) sides of the elements. If all the elements are unequal, the 
squaring is called perfect and the rectangle is called a perfect rectangle; otherwise 
the squaring is imperfect. A squaring that contains a smaller rectangle or square 
dissected in squares is called compound. All other squared rectangles or squares 
are simple. 

The lowest-order simple perfect squared square is of order 21 and was found 
in March 1978 [12]. The order-22 simple perfect 2 x 1 squared rectangle found 
in August 1978 appears to be of lowest order [11]. Recently, solutions of orders 
22, 23, and 24 were found by an exhaustive computer search [7]. Five simple 
perfect squares of order 25 were calculated by Wilson [16]. Federico found 
another three simple perfect squared squares of order 25 [13]. 

For squarings of order 25 we need c-nets of orders 26. Therefore, we first 
generated and identified c-nets of order 23, 24, and 25. These were stored on 
secondary storage. Those of order 26 were only generated and searched for the 
existence of perfect squared squares of order 25. I communicated my squared 
squares and 2 x 1 squared rectangles of orders 22, 23, and 24 to Bouwkamp. 
Bouwkamp then constructed 12 new solutions of order 25 from my results by 
means of transformation techniques [5]. 

For a historical overview of the squared-square and squared-rectangle prob- 
lems, see Federico [14]. 

Received by the editor May 19, 1992. 
1991 Mathematics Subject Classification. Primary 05C99, 68R10, 94C15. 
Key words and phrases. Graph theory, squared squares, 2 x 1 squared rectangles. 

(0 1994 American Mathematical Society 
0025-5718/94 $1.00 + $.25 per page 

325 



326 A. J. W. DUIJVESTIJN 

2. MATHEMATICAL THEORY AND COMPUTER PROCEDURES 

Squared rectangles and squared squares can be obtained from so-called c-nets 
[6]. A c-net is a three-connected planar graph. The order of a c-net is its number 
of edges. The dual of a c-net is also a c-net. The c-nets are constructed using 
Tutte's theorem, known since 1947 and published in 1961 [15]. 

Let C, be the set of c-nets of order n. If s E Cn is not a wheel, then 
at least one of the nets s and its dual s' can be constructed from a E Cn-, 
by addition of an edge joining two vertices. A wheel is a c-net with an even 
number of edges E, with one edge of degree E/2 and E/2 vertices of degree 
3. The degree of a vertex is the number of edges joining the vertex. Generation 
of c-nets of order n + 1 out of order n gives rise to many duplicate c-nets. 
These can be removed using an identification method described in 1962 [8, 9] 
and improved in 1978 [10]. 

Squarings can be obtained from c-nets by considering them as electrical net- 
works of unit resistances [6]. Basically, starting from c-nets of order n, those 
of order n + 1 are generated and identified using electronic computers. Dupli- 
cates are removed, currents are calculated and simple perfect squared squares 
and 2 x 1 squared rectangles are filtered. For details see [8, 9]. 

The generation of c-nets of order 25 was carried out during the Christmas 
vacation week 1991 using four Sun Sparc workstations of the Faculty of Com- 
puting Sciences of the UniversiLy Twente connected to the university network. 
During the period of January 7, 1992 to March 15, 1992 the order-25 squared- 
square solutions were calculated by means of four HP workstations also con- 
nected to the university network. Their speed is 75 Mflops. The machines were 
only available to me during the nights and the weekends. From c-nets of order 
25 those of order 26 were generated but kept in the machine and not stored 
on secondary storage. In all possible ways electromotive forces were placed in 
the branches and currents were calculated. Only squared squares and 2 x 1 
squared rectangle solutions were stored on the disk. 

3. RESULTS 

Results are presented in tables contained in a microfiche card attached to the 
inside back cover of this issue. 

Table I shows the Bouwkamp codes of simple perfect squared squares of order 
25. We found 19 doublets with side 273, 280, 289, 308, 322, 338, 378, 380, 404, 
416, 421, 492, 512, 536, 541, 544, 550, 552, and 603. We found seven triplets 
with side 264, 323, 384, 392, 396, 576, and 580. Furthermore, we found two 
quadruplets with side 320 and 556 and one sextet with side 540. The smallest 
reduced side we found is 147, the largest is 661. Table II shows the Bouwkamp 
codes of simple 2 x 1 perfect squared rectangles of order 25. Among the 2 x 1 
squared rectangles we found five doublets with sides 592 x 296, 604 x 302, 
676 x 338, 700 x 350, and 830 x 415 and one triplet with sides 616 x 308. 

Figure 1 shows two simple perfect squared squares with the largest element 
not on the boundary. Since for orders 21 to 24 no such perfect simple squared 
square exists, these two are of lowest order. Figures 2, 3, and 4 show three 
pairs of simple perfect squared squares with pairwise the same reduced sides 
and the same elements but differently arranged. Those of reduced sides 540 
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FIGURE 1. Two lowest-order simple perfect squared squares 
with largest element not on the boundary 
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FIGURE 2. Pair of lowest-order simple perfect squared squares 
with the same reduced side and elements differently arranged 
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FIGURE 3. Pair of lowest-order simple perfect squared squares 
with the same reduced side and elements differently arranged 
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FIGURE 4. Pair of lowest-order simple perfect squared squares 
with the same reduced side and elements differently arranged 
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FIGURE 5. Pair of lowest-order simple perfect squared 2 X 1 
rectangles with the same reduced sides and elements differently 
arranged 

[5] and 556 were already found by Bouwkamp and were obtained by means of 
transformation techniques using my results of order 24. Si-nce for orders lower 
than 25 such pairs do not exist, these are of lowest order. Finally, Figure 5 
shows a unique pair of simple perfect 2 X 1 rectangles of order 25. Since for 
lower order such solutions do not exist, it is of lowest order. Its existence was 
noticed by Bouwkamp while reading the final version of this paper. 
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